## **Class 10-Mathematics**

Instructions for students: The notes provided must be copied to the Maths copy and then do the homework in the same copy.

## **Chapter 17**

## **MENSURATION (Part - 3)**

**Sphere:** A sphere is a three- dimensional figure, which is made up of all points in space that lie at a constant distance from a fixed point.

The constant distance is called the **radius(r)** and the fixed point is called the **centre** of the sphere.

If a circular lamina is revolved about any of its diameters, a **solid sphere** is generated.

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Surface area of a sphere = 
$$4\pi r^2$$

**Spherical shell:** The solid enclosed between two concentric spheres is a spherical shell.

Volume of material a spherical shell = 
$$\frac{4}{3}\pi(R^3-r^3)$$

**Hemisphere:** When a sphere is cut into two equal parts through its centre each part is known as a hemisphere.

Volume of a hemisphere = 
$$\frac{2}{3}\pi r^3$$

Curved surface area = 
$$2\pi r^2$$

Total surface area = 
$$3\pi r^2$$

**Hemispherical shell:** The solid enclosed between two concentric hemi spheres is a hemi spherical shell.

Volume of material of a spherical shell= 
$$\frac{2}{3}\pi(R^3-r^3)$$

External curved surface area = 
$$2\pi R^2$$

Internal curved surface area = 
$$2\pi r^2$$

Total surface area = 
$$2\pi R^2 + 2\pi r^2 + \pi (R^2 - r^2)$$

## Exercise 17.3

10. Let the radii of the two spheres be 3x and 7x.

Volume of the first sphere V1 = 
$$\frac{4}{3}\pi r^3$$

$$= \frac{4}{3}\pi(3x)^3$$

$$= \frac{4}{3}\pi.27x^3$$

Volume of the second sphere V2 = 
$$\frac{4}{3}\pi r^3$$

$$= \frac{4}{3}\pi (7x)^3$$

$$= \frac{4}{3}\pi.343x^3$$

V1:V2 = 
$$\frac{\frac{4}{3}\pi.27x^3}{\frac{4}{3}\pi.343x^3}$$

V1:V2 = 
$$\frac{27}{343}$$

Surface area of the first sphere A1 = 
$$4\pi r^2$$

$$= 4\pi (3x)^2$$

$$= 4\pi.9x^2$$

Surface area of the second sphere A2 = 
$$4\pi r^2$$

$$= 4\pi (7x)^2$$

$$= 4\pi.49x^2$$

A1:A2 = 
$$\frac{4\pi.9x^2}{4\pi.49x^2}$$

A1:A2 = 
$$\frac{9}{49}$$

Volume of cube = 
$$4^3$$
 =  $64 \text{cm}^3$ 

Volume of sphere = 
$$\frac{4}{3}\pi r^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times 2^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times 8$$

$$= \frac{704}{21}$$

33.52 cm<sup>3</sup> approx.

Volume of the gap in between = 64 - 33.52 =

30.48 cm<sup>3</sup> approx.

15. Diameter of the hemispherical tank 14 m

> Radius r 7 m

Total capacity (Volume)

 $= \frac{2}{3}\pi r^3$ Of the tank

$$= \frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$$

718. 67 m<sup>3</sup> =718.67 Kilolitres approx.

Volume of water already in the tank

50 Kilolitres

Volume of more water to fill the tank

668.67 Kilolitres approx.

Home Work: Complete Exercise 17.3 in the Maths copy.

(Solve all the problems)